Cryptographic Hashing for Virus Localization

Giovanni Di Crescenzo
Telcordia Technologies
Piscataway, NJ

giovanni@research.telcordia.com

ABSTRACT

Virus detection is an important problem in the area of com-
puter security. Modern techniques attempting to solve this
problem fall into the general paradigms of signature detec-
tion and integrity checking. In this paper we focus on the
latter principle, which proposes to label an executable or
source file with a tag computed using a cryptographic hash
function, which later allows to detect if any changes have
been performed to the file. We suggest to extend this prin-
ciple so that not only changes to the file are detected, but
also these changes are localized within the file; this is espe-
cially useful in the virus diagnostics which can then focus
on the localized area in the file rather than the entire file.
This implicitly defines an apparently new problem, which we
call “virus localization”. We design techniques to solve the
virus localization problem based on repeated efficient appli-
cations of cryptographic hashing to carefully chosen subsets
of the set of file blocks, for each of the most important and
known virus infection techniques, such as rewriting tech-
niques, appending and prepending techniques, and insertion
techniques.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Veri-
fication— Reliability, Validation; F.2 [Analysis of Algo-
rithms and Problem Complexity]: Miscellaneous; G.4
[Mathematical Software]: Algorithm Design and Analy-
sis—FEfficiency

General Terms
Security, Algorithms, Theory

Keywords

Virus Detection, Virus Tolerance, Virus Localization, In-
tegrity Verification, Cryptographic Hashing

Faramak Vakil
Telcordia Technologies
Piscataway, NJ

farm@research.telcordia.com

1. INTRODUCTION

Virus detection is a problem of surprisingly wide impact
to any PC user, as she or he is routinely asked to take pre-
venting measures against viruses, such as buying and run-
ning antivirus software. In the light of early impossibility
results [1,2] for general virus detection, having theoretical
value but small practical impact, research in this area has
moved towards various heuristic approaches targeting, some-
times with success, specific classes of viruses. Some of the
most successful modern techniques attempting to solve this
problem fall into the general paradigms of signature detec-
tion and integrity checking (see, e.g. [3,4]). The former
requires discovering pieces of infected code (called signa-
tures) for known viruses, storing them and developing soft-
ware that scans the computer memory to search for such
signatures. The latter, which we focus on in this paper, re-
quires using cryptographic hash functions that detect unau-
thorized changes to a file, possibly detecting the presence
of unknown viruses. An important example of the success
of the latter technique is Tripwire [5], a widely available
and recommended integrity checking program for the UNIX
environment. It might also be instructive to look at both
techniques with an analogy with the two main intrusion de-
tection principles of signature and anomaly detection (see,
e.g. [6]): the signature virus detection paradigm is similar
to the signature detection principle in the intrusion detec-
tion area; the integrity checking paradigm, instead, is more
similar to the anomaly detection principle in the intrusion
detection area.

Our results. We suggest to extend the integrity checking
principle so that not only changes to the file are detected,
but also these changes are localized within the file; this is
especially useful in the virus diagnostics which can then fo-
cus on the localized area in the file rather than the entire
file (we stress that this phase is usually both very resource-
expensive and failure-prone in the absence of information
about the virus). This implicitly defines an apparently new
problem in the area of software security, which we call “virus
localization”. We start the study of this problem by char-
acterizing virus infection techniques, such as rewriting tech-
niques, appending and prepending techniques, and insertion

Permission to make digital or hard copies of all or part of this work for te.zchniques, and. by ppsing the. Pf?blem of designing tech-
personal or classroom use is granted without fee provided that copies areniques that achieve virus localization for all of them. Our
not made or distributed for profit or commercial advantage and that copies techniques are based on repeated efficient applications of
bear this notice and the full citation on the first page. To copy otherwise, 10 ¢ryptographic hashing to various subsets of the set of file
republish, to post on servers or to redistribute to lists, requires prior specific - :

p p q p p blocks, chosen according to codes that are specific to the

ermission and/or a fee. . . . . .
p infection technique. In all cases, our techniques achieve sat-

WORM’06,November 3, 2006, Alexandria, Virginia, USA. . o .
Copyright 2006 ACM 1-59593-551-7/06/00115.00. isfactory localization (an area at most twice as large as the

41



virus is identified in the corrupted file), and efficiency (the
hashes returned by our localizing hash functions are longer
that those returned by a conventional cryptographic hash
function by at most a logarithmic factor). We stress that
this output efficiency is a crucial property of a localizing
hash function, as there is a trivial construction (which we
later discuss in detail) that returns much longer hashes (i.e.,
by a factor linear in the number of atomic blocks of the input
document).

Previous results. To the best of our knowledge, the prob-
lem of virus localization has never been rigorously inves-
tigated or posed before. Cryptographic hashing is a well-
known paradigm for integrity verification, and is fundamen-
tal for programs that verify the integrity of file systems, like
Tripwire [5]. Cryptographic hashing of all atomic blocks of a
file is also a known paradigm, and is important for programs
that remotely update files over high latency, low bandwidth
link, like rsync [7], or address write-once archival data stor-
age purposes, like the Venti system [8]. We note that none
of these programs gets any closer than the mentioned trivial
construction to solve our virus localization problem.

Organization of the paper. In what follows, we first re-
view in Section 2 some well-known examples of PC viruses
and describe a classification of mechanisms followed by known
viruses (this will be useful before designing our localization
techniques). Then, in Section 3 we review known techniques
for virus detection and describe our novel techniques for
virus localization through cryptographic hashing. Finally, in
Section 4 we discuss properties and compare performances
of our techniques.

2. DEFINITIONS

We recall the known notion and formal definition of (cryp-
tographic) collision-resistant hashing (see, e.g. [9]), and de-
scribe a classification of virus behaviors that is useful in the
rest of the paper.

2.1 Collision-resistant hashing

Mathematical tools often used in Cryptography, called
“collision-intractable” hash functions (a.k.a. “collision-free”,

“collision-resistant”, and sometimes just called “cryptographic”),

are very often used for several applications, including those
requiring integrity verification of files, messages, etc. These
functions are defined as follows: they take as input a bi-
nary string of arbitrary length (representing the file to be
compressed), and return a fixed-size (e.g., 128- or 160-bit)
binary string as output (representing the hash or fingerprint
of the original file). Needless to say, the input to the hash
function being typically much longer than 160 bit implies
that the number of preimages of any single output of the
hash function is very large. Yet, the amazing property ex-
pected by these functions is that it seems computationally
intractable for any efficient algorithm to find even just two
preimages that map to the same output, in the sense that
any algorithm would have to take infeasible time (e.g., a few
centuries or more) to succeed in doing that.
We now recall their formal definition.

DEFINITION 2.1. Let k£ be a security parameter and let
H = {Hu}tren be a family of functions H, : {0,1}F x
{0,1}* — {0,1}°, where @ > b and w is a function index
satisfying |w| = k. We say that H is a collision-resistant

42

hash function family if: (1) there exists a probabilistic poly-
nomial time (in k) algorithm computing H, for each w;
(2) for any probabilistic polynomial-time algorithm A, there
exists a negligible function e such that, when w is uni-
formly chosen, the probability that A(w) = (x1,22) such
that Hy (21) = Hw(x2) is at most e(k).

Several constructions of collision-intractable hash functions
have been given in the literature under the hardness of spe-
cific number-theoretic problems; in practice, for efficiency
purposes, heuristic constructions, such as SHA1 or more re-
cent proposals [10], can be deployed.

In designing our techniques, we will use the following
property of collision-resistant hash functions (that directly
follows from their definition): except with negligible prob-
ability, Hy(z1) # Hw(x2) when z1 # x2, for |z1] > k and
|z2| > k. We will then define constructions of (composed)
collision-resistant hash functions that make repeated appli-
cations of an (atomic) collision-resistant hash function over
their input, so that the resulting output of the composed
function on any two inputs reveals information about the
inputs’ similarity /difference.

2.2 \iruses

We will consider viruses that perform certain modifica-
tions to a target file, resulting in a corrupted file, where the
type of modifications may vary according to specific infec-
tion techniques.

We first discuss well-known examples of viruses and then

present a characterization of PC viruses’ behaviors, defining
the infection techniques that we consider in the rest of the
paper.
Examples of PC Viruses. Let us briefly examine a few
examples of well-known virus attacks, e.g., Michelangelo
[11], Melissa [12], and Nimda [13], on the Internet to under-
stand how they infected the PCs and disrupted the Internet,
its users, and resources.

The well-known Michelangelo virus infected the boot sec-
tor of PCs running MS-DOS versions 2.xx and up. It moved
the contents of the original master boot record (MBR) file
to another location on the disk and placed itself into the
MBR. Upon next startups, the basic input-output system
would execute the Michelangelo’s code that would load the
virus into memory, and then would pass the control back to
the copy of the original MBR to continue the boot process
unless it was March 6. On that day Michelangelo would
completely wipe out the hard drive of the PC.

The Melissa virus/worm infected the MS Office applica-
tions and spread via Outlook e-mail. For instance, when
Melissa virus infected in a MSWord document, its code was
located in the DocumentOpen() subroutine that automati-
cally executed when a user tried to open a document.

The Nimda worm would exploit multiple vulnerabilities
of the Internet to infect the PCs and servers and spread
across the Internet rapidly. This worm would modify web
documents (e.g., .htm, .html, and .asp files) and certain exe-
cutable files found on the systems it infected, and would cre-
ate numerous copies of itself (using file names with .eml and
.nws extensions) in all writable directories. It would propa-

gate through email arriving as a MIME “multipart/alternative”

message consisting of two parts. The first part was de-
fined as MIME type “text/html”, though it contained no
text, so the email appears to have no content. The second



part was a MIME type “audio/x-wav” containing a base64-
encoded attachment that was a binary executable named
“readme.exe”.

Characterization of known PC viruses’ behaviors.
As illustrated in the above virus examples and discussed in
some computer virus literature (see, e.g., [3,4]), most In-
ternet viruses can be characterized to follow one of these
infection techniques: Overwriting, Prepending, Appending
and Embedding infection techniques, which we now describe
in detail.

Overwriting infection technigque. The virus infects an exe-
cutable file by replacing portion of the host’s code. One way
that this can be achieved is for the virus to simply open the
target file for writing as it would open a regular data file, and
then save a copy of itself to the file. When the executable
file is later launched by its owner, the operating system will
execute the code instead of the expected program. This in-
fection technique typically damages the host file to making
it not usable.

Prepending infection technique. The virus inserts its code at
the beginning of the executable file that it desires to infect.
This technique is generally more elaborated than the over-
writing technique and was used, for instance, by the virus
Nimda [13]. When the executable file is later launched by
its owner, the operating system will execute first the virus
code since it is located at the beginning of the executable,
and then the intended program. This infection technique
not only may not damage the host file but may have effects
that are not easily detectable from the code’s owner. In fact,
the presence itself of such a virus may not be easy to detect.

Appending infection technique. The virus inserts its code at
the end of the executable file that it desires to infect, and,
typically, a jump to the beginning of the virus code at the
beginning of the infected file. When the executable file is
later launched by its owner, the operating system will jump
to execute the virus code first and then return control to the
intended program. Similarly as with the prepending tech-
nique, the presence of a virus using this infection technique
may be not easy to detect. This technique was used, for
instance, by the virus Michelangelo [11].

Embedding infection technique. The virus inserts a piece
of code or a command pointing to code in a separate file
anywhere into a shell script, a Perl script, a Java class file
or source code of files that will eventually be compiled into
regular executables. Although less examples have been seen
of such techniques, they are very useful in reminding that
every program containing executable instructions is a po-
tential target for a virus.

Detection and Analysis of PC viruses. Available an-
tivirus software typically uses three main techniques for de-
tecting viruses: signatures, heuristics, and integrity verifi-
cation, which we briefly explain. The signature technique
is similar to the signature detection approach in intrusion
detection systems (or, perhaps, a variant of it): first, known
viruses are studied and signatures of them are stored; then
occurrences of these signatures are looked for into candidate
executable files. Although this is the most popular approach
for virus detection, it relies on quick update of the signature
database by vendors and of their signature files by users,
and it is easily defeated by polymorphic and metamorphic
virus techniques. The remaining two techniques (heuristics
and integrity verification), are more similar to the anomaly

detection approach in intrusion detection systems. Heuris-
tic techniques may be somewhat sophisticated in that they
attempt to identify viruses based on some behaviors that
they are likely to exhibit, such as attempts to write on ex-
ecutable files, to access boot sectors, to delete hard drive
contents, etc. Integrity verification techniques try to detect
unexpected modifications to files and after the infection has
happened, but potentially before the execution of the in-
fected file happens, thus still making the infection harmless.
While both heuristics and integrity verification techniques
have the potential of catching ‘more intelligent’ viruses such
as those equipped with polymorphism and metamorphism
capabilities, they are at most able to raise an alert on a
particular file, which later has to be carefully emulated and
analyzed in the virus diagnosis phase under a controlled en-
vironment where a conclusion about the location, nature
and consequences of the potential virus need to be derived.
Due to the difficulty of the realization of an accurate con-
trolled environment for emulation, the accuracy of the de-
rived consequences may be not entirely or not at all trusted
and it is naturally desirable to strengthen the mentioned
techniques. Moreover, in many cases the modification car-
ried by the virus to the original file is very minimal (e.g.,
a subroutine call to a program located somewhere else in
memory), and therefore it would be very helpful to have ad-
ditional information about the virus itself. In what follows,
we describe integrity verification techniques that addition-
ally provide useful virus localization properties.

3. OUR DETECTION APPROACH

As mentioned, the integrity verification techniques attempt
to detect unexpected modification to a file, before executing
it. In our approach, we would like to extend these techniques
so that, in case an unexpected modification is detected, some
additional information is obtained about the location of the
modification, within the file. We will refer to each of the
previously discussed virus infection techniques (character-
ized as: rewriting, prepending, appending, and ebbedding
techniques) and we will design virus localization technique
for each of them. To that purpose, it is useful to discuss
in slightly greater detail the original integrity verification
technique.

3.1 Integrity verification based on cryptographic
hashing

Given any collision-resistant hash function family H =
{Hu}ren (for simplicity of notation, we will drop the index
w from H,), and a file f, the 160-bit value hash = H(f)
gives evidence that any efficient algorithm (possibly creating
f itself) would not be able to obtain in feasible computation
time or to already have a g different from f meeting the in-
tegrity verification test H(g) = H(f). Integrity verification
of executable or source files is then done as follows. In a pre-
liminary stage, when the file f is believed to be not infected,
or as soon as the file is downloaded from its original source,
a tag hash = H(f) is attached to the file. Later, at any
time a legal modification on the file is performed, resulting
in file f’, a new value hash’ = H(f') replaces the previous
hash value. Later, at any time the file needs to be executed,
or compiled for execution, the integrity verification test is
performed on the current version f” of the file; that is, it
is checked whether hash’ = H(f"”). If the match is sat-
isfied, then we have evidence that only legal modifications



have been performed to the file; otherwise, some unexpected
modification has been performed. As this modification can
be caused by an infection, the file is then returned to an
analyzer that tries various diagnosis techniques, including
emulating the execution of the file in a safe environment, to
derive useful information about the virus and possibly re-
store the file f” to its previous, uninfected, state. In what
follows, we show techniques that help the emulation process
to focus on a certain area of the file that more accurately
localizes the potential virus.

We note that the original integrity verification technique
does not specifically deal with viruses changing the stored
hash value. Presumably, this technique may be modified to
deal with this case using any of the following ways:

(a) It assumes the existence of a secure read-only memory,
and stores all hash values in this memory (this can actually
be implemented more efficiently, by associating all the hash
values to leaves of a Merkle tree whose root is the only value
stored in the read-only memory);

(b) It assumes the existence of a memory that cannot be ac-
cessed by an attacker, and stores a symmetric key k into this
memory; then, a keyed hash function Hy, is used analogously
as H was used in the above description, and a public-key en-
cryption of key k is sent to the user downloading the file so
that the user can run Hy. Here, a different key k should
be used for each file, and, as before, instead of storing all
keys in the secure memory, one can define a Merkle tree over
them and only store the root value.

(c) It assumes the existence of a memory that cannot be
accessed by an attacker, and stores a signature secret key
sk into this memory; then, the computation of a hash value
hash’ using H as in the above description is followed by a
signature sig of hash’, and only the value sig’ is returned
for verification.

In the rest of the paper we also do not deal with viruses
changing any stored hash values, and carry on any of these
assumptions to our techniques.

3.2 Virus localization based on cryptographic
hashing

Towards our goal, the basic property of the above integrity
verification technique can be rephrased as follows. Given
files M1 and M, and their hashes hash(1l), and hash(2),
there exists an efficient algorithm DIFF that decides the
function p(Mi, M3), defined as equal to 1 if M7 = M, and
0 otherwise. Algorithm DIFF, on input p, hash(1l), and
hash(2), simply checks whether hash(1) = hash(2) and re-
turns 1 if yes or 0 otherwise. We would like to generalize
this approach to more general functions, in particular, to
functions detecting information about differences between
M; and M>, that are caused by each one among the previ-
ously discussed infection techniques (rewriting, appending,
prepending and embedding infection techniques). In gen-
eral, we will talk about p-revealing collision-resistant hash
functions, that are informally defined as collision-resistant
hash functions such that for any efficient adversary return-
ing two files M1, M>, there exists an efficient algorithm Det
that, on input the two hashes of M; and Ma, is able with
very high probability to compute the function p(Mi, M2),
where typically p is a function returning some information
about differences between the two files. (The formal def-
inition requires a somewhat elaborated probability experi-

ment and is deferred to the full paper.) While an arbitrary
collision-intractable hash function does not seem to help in
revealing useful information about the nature of the differ-
ences between M; and Ms> we will consider more involved
collision-intractable hash functions (starting from conven-
tional ones) that do achieve that.

An immediate (but inefficient) solution to construct a p-
revealing collision-resistant hash function is as follows. First
consider that in all our techniques we will view each file M as
composed of n atomic blocks M(1), M(2),..., M(n), where
a block size can be appropriately chosen; for instance, it
could be determined as the smallest semantic unit that a
file can be decomposed into (e.g., a line in a source file).
Then a very simple hash function is obtained by returning
an atomic hash of each block of the input file and then an
atomic hash of all the hashes previously computed, where
an atomic hash is computed using any collision-intractable
hash function. Note that with this technique one can use the
above algorithm DIFF on each block of the file and there-
fore derive any interesting information that is required by
function p, for any p. The obvious drawback however is that
the returned hash is too long, as it is equal to n times the
size of a conventional hash, which can be already imprac-
tical for files of quite small sizes, such as a few kilobytes.
(Still, it is worth noting that this technique is used as a cru-
cial component of the rsync algorithm [7], which addresses
the task of remotely updating files over a high latency, low
bandwidth link). This motivates our definition of two main
metrics associated with any construction of a p-revealing
ollision-resistant hash functions.

Two metrics of interest. As a consequence of the previ-
ous discussion, the main metric we pay special attention to is
the size of the returned hash, which we will refer to as the ex-
pansion factor of a construction, defined as follows: let H be
a collision-intractable hash function, and ¢H be a construc-
tion of a hash function which makes calls to H; then the ex-
pansion factor of cH is the size of the output returned by cH
on an n-bit input divided by the size of the output returned
by H on an n-bit input. Naturally, we aim at designing con-
structions with the shortest possible expansion factor (e.g.,
logarithmic in n). This implies very small computational
and storage overhead resulting from the added verifications
and generation of hashes, since all our constructions can be
described as a number of applications of hash function equal
to the expansion factor. Our general approach to achieve
this performance, as instantiated on each of the infection
techniques, is that of computing multiple applications of a
basic collision-intractable hash function to carefully chosen
subsets of the message bits; here, the choice of the subsets is
performed according to an appropriate “encoding schemes”
that later allows to “decode” the desired information about
the differences between the two messages from the multiple
hashes alone, where both the encoding/decoding schemes
and the desired information depend on the infection tech-
nique.

Another metric of interest will be that of minimizing the
localized area in which the virus is detected to belong to.
In particular, we aim at returning an interval of blocks con-
taining a number of blocks that is at most max(p - b(V), 1),
for some localization factor p, where b(V) is the number of
blocks that virus V' is made of.

We note that all our constructions achieve localization
factor p = 2, expansion factor logarithmic in n, and only



require unfrequent, off-line computations of the hashes (the
computation overhead is thus not a significant factor to-
wards the efficiency of the overall system).

3.3 Localization of rewriting infections

Recall that in rewriting infection techniques, a virus is a
portion of, say, text that rewrites some blocks of the file.
We will assume, for simplicity and since this seems to be
the case in most virus instances, that the file keeps the same
size even after rewriting and that the rewritten blocks are
adjacently located. We will design a p-revealing collision-
resistant hash function, where p is defined as follows. On
input n-block files M1 and Mo, function p(Mi, M2) is equal
to

— 0if M1 = Mo;

— (a,b) if b —a < n/4 and Mi(a), Mi(a+1),..., M1(b)
and Ms(a), M2(a + 1),..., M3(b) are the only blocks
where M; and M, differ;

— 1 otherwise.

In the above definition we restrict the analysis to viruses
rewriting at most n/4 blocks. We consider this to be satis-
factory enough as when a larger number of blocks is rewrit-
ten, the localization problem loses relevance, in that a lo-
calizing hash function is not significantly more useful than
a (conventional) hash function.

Our construction. Informally, our construction works as
follows. At each step, it uses the atomic collision-resistant
hash function H to compute hashes of some blocks of the
input file. Given any two files M, My that differ due to
a rewriting virus that modified M7 into M2, the hashes in
each step should help in finding the location of the virus by
eliminating half of the candidate blocks in Ms. The blocks
eliminated are one among these four: the first half or the
second half of the yet not eliminated blocks in the file, or,
the first half or the second half of an appropriate cyclical
shift of yet not eliminated blocks in the file. This is enough
to achieve localization factor 2, and, since at each step 4
hashes are computed, output expansion at most 4 logn.

Formal description. Let H denote a collision-resistant hash
function. Our p-revealing collision-resistant hash function,
which we denote as pH, takes as input an n-block message
M = M(0),...,M(n—1), and applies 4 log n times the origi-
nal function H to subsets of the £ blocks of M, as follows (we
assume that n is a power of 2 for simplicity and logarithms
are in base 2):

Step 1: In this first step, the blocks in M are grouped into

4 segments, each obtained by concatenating n/2 blocks, de-
fined as

Sll—M(0)|~--\M(n/2—1)7
=M(n/2)|--|M(n—1),

Slng(n/Zl)\ |M(3n/4—1),and

S1a=M(O)]---[M(n/4—1)|M@Bn/4)|---[M(n—1)).

(Note that the indices of the blocks in Si3 and Si4 are
obtained by cyclically shifting the indices of the blocks in
S1,1 and Si,2, respectively, by n/4.) The 4 hashes in this
step are computed as hi; = H(S1,;) for i =1,2,3,4.

Step j, for 7 = 2,...,logn — 1: Extending step 1, the
blocks in M are grouped in 2 - 27 segments, each obtained

by concatenating n/27 blocks, defined as S;; = M((i — 1) *
n/27)| - |M(ixn/27 —1) and S;ivei = M(((z’— 1) xn/27 +
n/27TY) mod n)| - - |M((z*n/2]+n/23+171) mod n), for
i=1,...,27, (note that the indices of the blocks in S itoi
are obtained by cyclically shifting those in Sj;; by n/2j+1).
The 4 hashes in this step are computed as follows: when
i=1,2,

hji = H(S5lSjit2]S5,i4a] -

and, when 7 = 3,4,
hj,i = H(Sj,i—2+2j ‘S',i+2j |S',i+2j+2| T
((h1,i, b2y, - -

Properties of our construction. The overall number of
atomic hashes of pH is only 4logn — 4, which is essentially
optimal (up to a small constant) in a model where each hash
reveals one bit of information about the location of the virus
interval.

To get convinced that pH is collision-resistant, observe
that an algorithm finding collisions in the output of pH finds
two different inputs that are mapped by H to the same h(j|7)
for at least one of the values j = 0,1,...,logn, and i =
1,2,3,4, which implies an algorithm for finding a collision
for H.

We now prove that pH is p-revealing. First of all, we note

that by definition of p, it is enough to only consider the case
b—a < n/4. Then the claim follows by the following lemma:
There exists an efficient algorithm that, for any virus interval
(a’, V') of size at most n/(2-27), on input M’ (a version of M
subject to rewriting infection with the virus interval (a’, b))
and the hashes obtained until step j of the construction
pH on input the original file M, returns an interval (a,b)
such that a < o’ < b < b and, if n/27 > (b—a + 1),
(b—a+1) <n/2’. To see that the lemma implies the fact
that pH is p-revealing and has localization factor 2, consider
any virus interval (a’,b’) of size b’ — a’ < m/4, and take j
such that n/27T" < (b’ —a’ + 1) < n/27; by applying the
lemma, for this value of j, we obtain that a < a’ < b < b,
which implies that pH is p-revealing, and (b —a + 1) <
n/29 < 2(b' —a’ + 1), which implies that it has localization
factor 2. We now prove the lemma by induction over j.
We show an efficient algorithm Det that first computes the
output h = ( ( /1,2'7 h/2,i7 s hiog nfl,i) )’5:172374’ of pH on
input M’, and then computes ¢;; = 1if hj; # h; ort;; =0
if hj; = h”, for all indices (j,7), j € {1,...,logn — 1},
i € {1,2,3,4}, and uses values t;; to return an interval
(a,b).
Base case (j = 1). We note that any virus interval (a’, ") of
size at most n/4 is strictly contained in exactly one among
St,i, for i = 1,2,3,4, and therefore exactly one of values
t1,, will be equal to 1. Given values t;;, for i = 1,2,3,4,
such that ¢1,;+ = 1, algorithm Det can return (a, b) equal to
(0,n/2—1),(n/2,n—1),(n/4,3n/4—1) or (3n/4,(5n/4—1)
mod n), if :* = 1,2, 3 or 4, respectively.

|S',i+2j—2)§

|S',i+2j+2j—4)-

Output: h = s Plogn—1,i) )i=1,2,3,4-

Inductive step. We consider any virus interval (a’,b’) of
size at most n/(2 - 27); since n/(2-27) < n/(2-2771), by
the induction hypothesis, we obtain that there exists an al-
gorithm that by only using the hashes obtained until step
j — 1 of the construction pH, returns an interval (a”,b")
that contains (a’,b') and satisfies (b” — a”’) < n/297'. We
would like to extend the algorithm so that it returns an in-
terval (a,b) that contains (a’,b’) and satisfies (b—a) < n/27.



We assume (b — a”’) > n/27 (or otherwise there is nothing
else to prove), that (a”,b”) = S;_1,; for some ¢ (note that
|Sj—1,:| = n/277 1), and consider the hashes obtained at step
j of the construction pH. These hashes contain hashes of 4
intervals Sj,il, Sj,iz, Sj,ig, S]',i4 such that the following hOldS:

(a) the interval (a”,b”) can be partitioned into the 2 equal-
size intervals T1 = (a”,b") N S;—1.41 and T2 = (a”’,b") N
S;_1,2 and into the 2 equal-size intervals T3 = (a”,b") N
ijl,ig and Ty = (a”, b”) n Sj—l,i4§

(b) |T1| = [T2| = |T5| = [T4]; and

(c) the indices of the blocks in T3 and Ty are obtained by
cyclically shifting those in 71 and 7%, respectively, by n/27.

Due to (a), (b), and (c), we can apply the same reasoning
done in the base case to intervals Th,7%,T5,T4, and thus
obtain that any virus interval (a’,b") of size at most n/(2 -
27) is strictly contained in exactly one among Tj, for i =
1,2,3,4, and therefore exactly one of the values ¢;,; obtained
from the hashes at step j will be equal to 1. Given values
t;q, for i = 1,2,3,4, such that t; ;- = 1, the algorithm can
return (a,b) equal to T1,T%,T5 or Ty, if i = 1,2,3 or 4,
respectively.

3.4 Localization of appending infections

We will only deal with appending infection techniques as
prepending infection techniques can be dealt with in a sym-
metric way. Recall that in appending infection techniques, a
virus is a portion of, say, text that is appended at the end of
the target file, and, as a consequence, the file size increases
and after the virus is appended the previous file size may
be lost. We will design a p-revealing collision-resistant hash
function, where p is defined as follows. On input M; and
My (of not necessarily equal length), function p(Mi, M) is
equal to

- OifMleQ;

— zif |[Ma| < 2:|Mi|and M; (i) = Ma(i) fori=1,...,2—
1 and M (4) # M2(i) for i = x.

— | otherwise.

Similarly as in the case of overwriting infections, here we can
restrict the analysis to viruses appending at most n blocks
(that is, we assume that the number of blocks in Ms is at
most 2n, where n is the number of blocks in Mj).

Our construction. Informally, our construction works as
follows. At each step, it uses the atomic collision-resistant
hash function H to computes 2 hashes of some blocks of the
input file. Given any two files M7, M> that differ due to an
appending virus that modified M; into M2, the 2 hashes in
each step should help in finding the location of the virus by
eliminating about half of the candidate blocks in Ms. One
main difficulty with appending viruses is that the length
of file My may be different from the length of target file
M, and, therefore, we cannot use “length-dependent” tech-
niques such as those for the rewriting viruses. Instead, we
start eliminating candidate blocks from the beginning of the
file, by carefully computing hashes on subsets independent
from the length of the target file.

Formal description. Let H denote a collision-resistant hash
function. Our p-revealing collision-resistant hash function,
which we denote as pH, takes as input an ¢-block message
M = M(1),...,M(£), and applies at most 2log ¢ times the

46

original function H to subsets of the n blocks of M, as fol-
lows:

1. set j < 1 and M; = M;

2. compute the largest positive integer k; such that 2k <
£/2
obtain, from M;, the following two segments:
Sjn = M;(1),..., M;(2%),
Sja = M;(2F +1),..., M;(2FTh);
compute hash hi; = H(S;;) for i =1,2;

3. repeat step 2 recursively over M,y = M;(2% +
D)|---|M;(£) if £ — 2T 4+ 1 > 1 (that is, unless the
new input M;; has 0 or 1 blocks, when the recursion
ends), and set j = j + 1;

4. return all computed hashes (h1,:, h2,,. .., Rloge,i)i=1,2.
Properties of our construction. We denote by n the
number of blocks of the target file M and by n’ the number
of blocks of the corrupted file M’. Then we note that there
are at most log ¢ recursion steps and therefore the overall
number of hashes returned by pH is < 2logn’ < 2logn +1,
since we assume that n’ < 2n. This expansion factor is
essentially optimal (up to a small constant) in a model where
each hash reveals one bit of information about the location
of the virus interval.

To get convinced that pH is collision-resistant, observe
that an algorithm finding collisions in the output of pH finds
two different inputs that are mapped by H to the same h(j]7)
for at least one of the values j = 1,...,logn, and i = 1,2,
which implies an algorithm for finding a collision for H.

We now sketch the proof that pH is p-revealing. We start
by noting that the computation of pH is divided into recur-
sive steps, where the j-th step takes as input M;(s;)|-- - |M(£),
and (s1,...,Sl0g¢) in an increasing sequence of integers in
{1,...,£} such that s; = 2%-17* £ 1 for j > 2, and s; = 1
when j = 1. We also note that by definition of p, it is
enough to only consider the case s > £/2. Then the claim
follows directly by the following lemma: there exists an ef-
ficient algorithm that, for any virus interval (s,£) with at
least £ — s; + 1 blocks, on input an ¢-block corrupted file
M, equal to the target file M with interval (s,¢) appended
to it, and the hashes obtained in the first j — 1 steps of
the recursion in the construction pH, returns a value x such
that x < s (that is, the algorithm localizes the virus) and
x > 2s —n — 1 (that is, the localization factor of pH is at
most 2).

We now prove the lemma by induction over j. A first ob-
servation is that there exists an efficient algorithm Det that,
as a first step, runs a slightly modified version of function
pH on input M’ the modification being as follows.

(a) Step 2" computes values kj and segments S} ; using the
number of blocks n’ of M’ while Step 2 computes values
k; and segments S;; using the number of blocks n of M
(this implies that, in general, k;, S;,; may be different from
k}, S5 ;, respectively);

(b) in step 2', 3 segments (rather than 2 as in step 2) are
obtained from Mj;: S; 1 and Sj2, as defined in step 2, and
also Sj,0, defined as = Mj(l),,..,Mj(Qk;'_l); at the end of
step 2/, the 3 hashes hi; = H(S;(i)), for i = 0,1,2, are
computed.



Thus, algorithm Det can compute an ‘augmented’ hash out-
put B = ( ( ’1,1'7 hlz,z'y sy h’{ogn”i) )i:0,1,2-

Base case (j = 1). Recall that k; is defined as the largest
positive integer such that 2%t < n/2, and ki is defined as the
largest positive integer such that 251 < n'/2. Since n' # n,
it may hold that k1 # k7; however, since n’ < 2n, it holds
that k] € {k1,k1 + 1}. We assume wlog that the algorithm
Det can check whether k7 = k1 or k7 = k1 + 1 (this can be
achieved in many ways; for instance, by augmenting each
of the 2log ¢ atomic hashes in the output returned by pH
with the number of blocks in its input). First, consider
the case ki = ki; then, algorithm Det, after computing
R', returns x = 2F* + 1 if R}, = hi1 and i, # hi2; or
returns ¢ = 1 if by ; # h1,; for ¢ = 1,2. Now, consider the
case ki = k1 + 1; then, algorithm Det, after computing h’,
returns = 2F1 +1 if hi o = hi1 and ki ; # hi 2; or returns
x=1if Ay ;_y # hi, for i = 1,2. To see that this output
returns a valid localization, it is enough to observe that the
following holds: either |S} | = |Sj1], in correspondence to
k1 = k1, or |S] o| = |Sj,1], in correspondence to ki = ki + 1.

Inductive step. The proof of the inductive step is an adap-
tation of the reasoning in the base case.

3.5 Localization of embedding infections

Recall that in embedding infection techniques, a virus is a
portion of, say, text that is inserted somewhere in the middle
of the target file (and not at the beginning or the end), thus
again increasing the size of the file. We will design a p-
revealing collision-resistant hash function, where p is defined
as follows.

On input My and M (of not necessarily equal length),
function p(My, M2) is equal to

— OifMlZMQ;

— (a,b) if b —a < n/2 and M1(i) = M>(i) for i =
1,...,&—1, andM1(i1):M2(i2) fori1:b+1,...,n,
and o =91 +b—1+1.

— | otherwise.

Here we restrict the analysis to viruses embedding at most
n blocks (that is, we assume that the number of blocks in
M> is at most 2n, where n is the number of blocks in the
target file My).

Ideas behind our construction. This construction is
somewhat less interesting as it is obtained as a direct com-
bination of ideas from the previous two ones.

First, we use a variant of the construction for appending
viruses to obtain a ‘length-independent’ choice of subsets
for the localization of the beginning of the embedded virus
interval, and we apply the same technique to the reversed
input file (i.e., the same file, reordered from the last block
to the first) for the localization of the end of the embedded
virus interval.

This is then combined with a variant of the construction
for rewriting viruses to eliminate, on each step of the con-
struction, half of the candidate blocks in the corrupted file;
the combination consists of employing this technique using
‘length-independent’ subsets of file blocks.

The resulting construction has localization factor 2 and
expansion factor 16 log ¢, where ¢ is the size of the input file.

Details are deferred to the full paper.

47

Construction  Infection  Virus length x
name technique restriction
detection any none
trivial any none
pH, rewriting x<n/4
pHs appending z<n
pHs embedding x<n

Figure 1: Applicability of our techniques.

Construction Localizing Expansion  Time
name factor factor blowup
detection n 1 1
trivial 1 n 1
pH; 2 4logn 4logn
pH> 2 2logn 2logn
pHs 2 32logn 32logn

Figure 2: Performance of our techniques.

4. PERFORMANCE ANALYSIS

We now summarize and comment the applicability and
performance of our techniques, when compared with two
known techniques mentioned in the paper.

The summary is depicted in Figures 1 and 2. (Here, recall
that by “detection construction” we denote the construction
that only computes a single hash of its entire input file;
by “trivial construction” we denote the construction that
computes a single hash of each block of the input file; and
our constructions in Section 3.3, 3.4, and 3.5, are denoted
as pH1,pH2, pHs3, respectively.)

We now discuss the entries in the above tables.

While the detection and the trivial constructions are ap-
plicable to any infection technique in the characterization
given in Section 2, each of the three hash function construc-
tions pH1, pH2, pHs was tailored for a specific infection tech-
nique. Additionally, we note that one should consider the
restrictions on the virus length in these constructions to be
essentially without loss of generality, as the virus localiza-
tion problem loses significance whenever such restrictions
are not satisfied.

With respect to the localizing factor, we note that the
detection construction practically does no localization, while
the trivial construction has the best possible localization
(as it localizes all infected blocks), and the constructions
pH1,pH2,pH3 localize an area only at most twice as large
as the infected area.

With respect to the expansion factor, we note that the
trivial construction has a too large expansion, while the de-
tection construction has practically no expansion and the
constructions pH1, pH2, pH3 only have a logarithmic (in n)
expansion of the hash.

Finally, with respect to the time performance, we note
that the trivial and detection construction have essentially
no time blowup (with respect to a single hash computation),
and constructions pHi,pH2,pHs only compute a logarith-
mic (in n) number of hashes.



Acknowledgement.

We thank the WORM 2006 committee for very helpful com-
ments.

5.
1]

2]

3]
[4]

[5]

REFERENCES

F. Cohen. Computer Viruses - Theory and
Experiments. Computers and Security, vol. 6, 1987.

F. Cohen. On the Implications of Computer Viruses
and Methods of Defense. Computers and Security, vol.
7, 1988.

E. Skoudis. MALWARE: Fighting Malicious Code.
Prentice Hall, 2004.

P. Szor. The Art of Computer Virus Research and
Defense. Addison Wesley, 2005.

G. H. Kim and E. H. Spafford. The design and
implementation of tripwire: a file system integrity
checker. Proc. of 2nd ACM Conference on Computer
and Communications Security (ACM CCS), 1994.

G. Di Crescenzo, A. Ghosh, and R. Talpade. The
design and implementation of tripwire: a file system
integrity checker. Computer Security - ESORICS
2005, Proc. of 10th European Symposium on Research
in Computer Security, vol. 3679 of Lecture Notes in
Computer Science, Springer-Verlag, 2005.

[7]

(10]

(11]

(12]

(13]

A. Tridgell. Efficient Algorithms for Sorting and
Synchronization.

http://samba.org/ tridge/phd_thesis.pdf.

S. Quinlan and S. Dorward. Venti: A new approach to
archival storage. Proc. of USENIX Conference on File
and Storage Technologies (FAST), 2002.

B. Schneier. Applied Cryptography: Protocols,
Algorithms, and Source Code in C. John Wiley &
Sons, 1993.

1st NIST Cryptographic Hash Functions Workshop.
http://www.csrc.nist.gov/pki/HashWorkshop/2005/
program.htm, 2005.

CERT Advisory CA-1992-02 Michelangelo PC Virus
Warning,
http://www.cert.org/advisories/CA-1992-02.html,
1997.

CERT Advisory CA-1999-04 Melissa Macro Virus,
http://www.cert.org/advisories/ CA-1999-04.html,
1999.

CERT Advisory CA-2001-26 Nimda Worm,
http://www.cert.org/advisories/ CA-2001-26.html,
2001.



